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A theory for free outflow beneath radial gates 
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A n  analysis is made of the free outflow of fluid from those underflow gates known 
as radial or Tainter gates. Attention is focused on a correct treatment of the 
effects of gate curvature and of gravity on the flow. The rapidly convergent, 
iterative solution is based on the combined use of conformal mapping and the 
Riemann-Hilbert solution to a mixed boundary-value problem. A limited com- 
parison with some experimental results shows agreement to be good. 

1. Introduction 
The radial or Tainter gate and various forms of the vertical sluice gate are 

both underflow gates commonly used to regulate the flow of water over spillway 
crests and through canals and a wide variety of other hydraulic conveyance 
structures. In hydrodynamics, however, past studies have almost entirely ignored 
the radial gate in favour of the vertical sluice gate, for the latter presents to the 
theoretician a far more tractable, although still difficult, analytical problem. 

For nearly a century various investigators have developed analytical solutions 
which describe the eflux of fluid from containers of various geometries and which 
in varying degrees are related to the actual sluice gate problem, which in terms 
of two-dimensional, incompressible, inviscid flow is properly posed as a gravity- 
affected flow possessing two free surfaces, one upstream and one downstream of 
the gate. A first approximate measure of the contraction coefficient was found 
by analyzing the efflux from a slot in the wall of an infinite reservoir (Rayleigh 
1876). Also considered by Rayleigh and successors was the effect of finite channel 
width on the efflux from an enclosed slot. However, these studies all neglected 
gravity. The next advances were made by attempting to alter the shape of the 
hodograph plane to account for the effect of gravity on the downstream free 
surface (Pajer 1937; Benjamin 1956; Perry 1957). Southwell & Vaisey (1946) 
applied relaxation techniques to the problem. Fangmeier & Strelkoff (1968) and 
Klassen (1967) present solutions to the vertical sluice gate problem, each of 
which avoids using the hodograph plane and instead formulates a non-linear 
integral equation from which the solution is deduced. Of all these solutions, only 
that of Fangmeier & Strelkoff is ‘exact’ in the sense that it alone properly 
accounts for the existence of both free surfaces. Even more recently the Riemann- 
Hilbert technique has been applied to the problem of gravity-affected flow from 
planar sluice gates of arbitrary inclination (Larock 1 9 6 9 ~ ) .  

On the other hand, progress toward a workable analytical theory for the 
detailed description of flow past radial gates has been almost non-existent. 

54-2 



852 B. E. Larock 

Metzler (1948) and later Toch (1955) have conducted some of the better known 
experimental research on the characteristics of radial gate flows. In  his study, 
Toch correlated lip angle with von Mises’s (1917) work with some success. The 
U.S. Army Engineer Waterways Experiment Station a t  Vicksburg, Mississippi, 
has used these and other data to prepare hydraulic design charts which are used 
to describe the discharge properties of these gates. More recently Babb, Moayeri 
& Amorocho (1966) conducted an independent experimental programme on 
models of the radial gates to be used as part of the California Aqueduct 
project. 

The goal of the present work was to develop a realistic and yet workable theory 
for the analytical description of flow past radial or Tainter gates. This project 
builds on two previous studies conducted by the writer: (i) The basic flow model 
wa.s developed in a study of gravity-affected flow past planar sluice gates of 
a.rbitrary inclination (Larock 1 9 6 9 ~ ) ;  the method of incorporating the effects 
of gravity into this analysis was also developed there. (ii) Work on the flow of 
fluid past solid curvilinear boundaries forms the basis of the current treatment 
of the effects of gate curvature. Some examples are presented to illustrate features 
and uses of the theory. Theoretical discharge coefficients are compared to ex- 
perimentally determined coefficients; within the limitations of the theory, the 
agreement is good. In  this study, however, it was economically unfeasible to 
generate a complete set of plots for the range of the many different geometric 
variables, so this was not done. 

2. Problem formulation 
The problem formulation and solution is chosen to take advantage of some 

recently developed techniques which have been applied to the solution of several 
related problems (Larock & Street 1967; Larock 1969a, b).  These techniques 
adapted the Riemann-Hilbert technique to problems involving free surfaces 
in tt transverse gravity field and the flow of fluid past curvilinear solid boundaries. 
Nevertheless the techniques still must be applied to a model of the exact problem 
rather than to the exact problem itself. 

Steady, two-dimensional, irrotational flow of an incompressible, homogeneous 
fluid past a radial gate is studied here, as shown in figure 1, which is the physical 
or z plane. Viscosity and surface tension are neglected. The origin of co-ordinates 
x = x + iy is on the channel bottom directly under point A ,  which is the point 
where the upper free surface and the gate intersect. The surface AD is physically 
a free surface subjected to atmospheric pressure only; for mathematical reasons 
this surface is assumed to be horizontal and located a distance y1 above the 
channel bottom. Here y1 and yz are the channel depths far upstream and down- 
stream, respectively, and qI and q2 are the corresponding uniform upstream and 
downstream flow speeds. This model of the physical problem appears to be 
reasonable for y1/y2 > 3 and becomes more accurate as y1/y2 increases. Segment 
AB is the radial gate, each point P of which has some prescribed local inclination 
P(P).  The flow separates smoothly from point B, and eventually the flow again 
becomes uniform downstream a t  C. 
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The mathematical description of this flow is found by the following approach: 
(i) by conformal mapping the physical plane is related to a parametric upper 
half-plane, called the t plane, and to the complex potential plane, called the 
W plane; (ii) in the half-plane a well-posed Riemann-Hilbert mixed boundary- 
value problem is formally solved; and (iii) the formal solution is iteratively 
refined until the solution for the actual gravity-affected flow has been found with 
acceptable accuracy. The number of needed iterations depends on both the 
extent with which gravity affects the flow and the amount of curvature of the 
gate. Normally only two or three iterations are required. Although all final 
results of this study are presented in real form, the use of complex-variable 
theory is essential to the solution. 

D- 

41 - 

FIGURE 1. Schematic of the physical z-plane. 

Mass and energy must be conserved for this flow. Mass is conserved between 

(1) 
points C and D if 

and, according to Bernoulli, 
9lYl = P 2 Y 2 ,  

between point D, any point y on the downstream free surface, and point C, 
respectively, for energy conservation. Here p ,  is the gauge pressure far upstream 
on the upper surface, pis the constant fluid density, g is the gravitational accelera- 
tion, and q and y are the fluid speed and depth at  the point on the free surface. 
To model best the upstream free surface, p ,  is equated to zero; due to the choice 
of flow model, however, p1  need not necessarily be zero, Equations (1) and ( 2 )  
can be arranged to give 

q2 
(3) 

showing that the local fluid speed ratio q/q2 is a function only of the local depth 
ratio and the chosen downstream reference Froude number F2 = q:/(gy2). 

The downstream Froude number is a convenient measure of the effect of 
gravity 011 the flow. As (3) shows, q -+ q2 when P2 becomes large, and the effect 
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of gravity diminishes. For all underflow gates, whether they are radial gates or 
planar sluice gates, the proper value of P2 is determined by the reference depth 
ratio s = y1/y2 and the upstream pressure coefficient Cpl = pl/(+pq;). Specifically, 
(1) and (2) show 

D 

or, when Cpl = 0 for atmospheric pressure a t  the upstream surface, 

ph-= - q ,  
2 yz 

C 

The image of the flow in the plane of the complex potential W = $ + i$ is an 
infinite slit, as shown in figure 2; $ is the velocity potential and I++ is the stream 
fuiiction with I++ = 0 chosen to coincide with the free surface. The T.V plane is 
related to the physical or z plane by 

where < is the normalized complex velocity, and B is the argument of the 
velocity. Using the more convenient variable 

w = In 5' = In (q/q2) + i( - O), (7)  

(6) formally gives z ,  as a function of the one variable t ,  as 

To determine W ( t )  the complex potential plane is mapped to the upper half 
t plane, figure 3, so that the boundaries of the flow domain map onto the real 
line as shown. To ensure uniqueness of the mapping (Churchill 1960), the 
following point correspondence is chosen: 

(9) 

B : W = O ,  t = O ,  

c: W - t  +co, t = - 1 ,  

D: W +  -00, t+w.  
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The scale constant of the mapping is found by requiring Im ( W )  = - $,, = - qz y2 
for real t ,< - 1 ; thus, 

w ( t )  = -WzIn( l+ t ) .  7r (10) 

D e=o : q 

-1 

The physical plane is then given in normalized form as 

B 6 I 8=0 D A 

t A  Re(0 

Presuming for a moment that either the magnitude or the inclination of the 
complex velocity is known on the entire boundary of the flow domain, .one can 
then convert this information into that required to solve a well-posed Riemann- 
Hilbert mixed boundary-value problem. For this problem one may state that 

Im(o)  = 0 (-a3 < t < -1)J 

Re(@) =&ln[l-A(yo_l)] Yz (-1 < t < o), 

Im (0) = P(t) 
Im(o) = 0 

(0 < t < ta),  

(ta < t < a), 

on the real line. The techniques which must be used because neither y( t )  or 
P(t) are known initially will be discussed later. 

The general solution of the Riemann-Hilbert mixed boundary-value problem 
in an upper half-plane is well known (e.g. Larock & Street 1965). If  the imaginary 
part of some function Q(t),  Im [Q(t)],  is known at all points on the real line, then 

which is a regular analytic function in the entire upper half-plane. If the quotient 
Q(t) = w(t)/H(t) can be constructed in such a way that Im [&(t)] is known on the 
real line, as required, then the Riemann-Hilbert solution can be used to construct 
o(t) explicitly. Following the method of Cheng & Rott (1954), the solution to the 
homogeneous analogue of (12) is introduced (Larock 1969a) as 

H(t )  = [t(l +t)]k (14) 
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The requirements that the flow separate smoothly at B and be uniform at D 
forces Ai = 0 for a l l j  (Larock 1 9 6 9 ~ ) .  Formally the expression for o(t) is therefore 

The parameter t A  is determined by requiring that q = q1 and 0 = 0 far up- 
stream at D(t + a). This is equivalent to requiring that 

be satisfied. Now w ( t )  is known, and the resulting configuration in the physical 
plane is given by (1 1). Furthermore, if the local pressure coefficient 

is wanted a t  any point in the flow, (2), (6) and (7) give C, in terms of w and its 
conjugate W as 

cp = PI(ikPPP22) (17) 

Cp = l-exp(w+g). (18) 

3. The gate curvature function P( t )  

Ideally the local gate inclination P would be directly prescribed as a function 
of z. This goal is not attainable for the current problem, however, because of 
the inverse nature of the solution. Instead it is required that /3 be described as 
a known function oft. Larock (19693) has shown that any piecewise continuous 
polynomial representation of P(t) can be rather easily incorporated into the 
current theory, although higher order expressions for P(t) can quickly produce 
bulky results. Fortunately it was found that a prescribed linear variation for 
P(t) produces nearly circular arcs in the physical plane. It was further found 
that a simple linear variation in P(t) was not nearly so successful in producing 
an approximately constant radius of curvature R as was a prescription of two 
separate linear variations in P(t) over the ranges (0, t J )  and (t J ,  tA)  between points 
A and B. At the juncture point tJ (point J in figure 1) P(t) was required to be 
continuous but P’(t) was allowed to have a discontinuity. With this prescription 
for P(t )  it was possible to keep the local radius of curvature R from varying by 
more than 1-3 %, with the larger value applying only to those gates with a larger 
included angle between A and B. 

Mathematically, P(t)  was constructed to satisfy the requirements that 

(19) 

(O G G t J ) ,  } 
(20) 

1 P = P1 at t = tA,  

P =  P2 at t = t J ,  

P= P3 at t = 0, 

with linear variation at intermediate t points. Hence, P(t) is given as 

P(t) = P 3  + ( P 2  - P 3 )  t / tJ 

= [ ( P 1 - P 2 ) t f P 2 t ~ - P 3 t J l / ( t A - t J )  ( tJ  G 6 t A ) .  

It was felt that this choice represented a judicious balance between mathematical 
simplicity and accuracy of physical representation. 
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4. The solution 
The results of this study are primarily a knowledge of the relation between 

gate geometry, the contraction coefficient C, and discharge coefficient C, for the 
gate and the downstream free-surface location. Also determined in the study 
was the variation in fluid speed and pressure coefficient on the gate and along the 
channel bottom under the gate. Letting 

the substitution of (20) for P(t) into (16) gives 

as the condition which fixes tA. In  satisfying this equation the ratio h = tJ/ ta,  
essentially a shape factor for the gate, was normally fixed. Then the computer 
employed a successive approximation procedure, actually a bisection process, to 
find a root t ,  which satisfied (22).  

The compIete expression for o(t), upon insertion of (20) into (15),  is 

for -I < t < 0, where the slash on the integral sign indicates the deletion of 
the point 7 = t from bhe range of integration, the substitution of (20) into (15) 
gives w(t) dong the gate as 

w(t) = iP(t) + G,(t) + M ( t )  (0 ,< t ,< tA), (25) 
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and along the downstream free surface as 

Introduced above is the notation 

and B(t) = - 2 Bk(t), 
k= 1 

It should be noted that 

Gp(0)  = i l n  1-- - -1  [ 3; )I (29) 

and G,(O) = G,( - 1) = 0 where gB is the y co-ordinate of the gate lip, point B. 
The gate shape is then given parametrically by (8) in the form 

, ( 3 0 4  -- 
Y2 t o  l + r  

and 

If one integrates from the known point A towards point B, then to = tA,  t < t,, 
xo = 0 a.nd yo = yl. Along the gate the local pressure coefficient Cp is simply given 
by (18) as 

Cp = 1 -exp [2M(t)]  (0  < t < ta). (31) 
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The shape of the downstream free surface is given by combining ( 8 )  and (23)  
to obtain another pair of parametric expressions: 

To begin integration from the gate lip, point B, one selects 

to = 0, t < 0, x0 = xB = ~ ( 0 )  and yo = y B  = ~ ( 0 ) .  

The contraction coefficient and discharge coefficient for the gate can now be 
readily determined. The contraction coefficient C, is the ratio of the downstream 
depth to the gate opening, or C, = y2/yB.  The discharge per unit width Qd is 
related to the product of the gate width gB and a convenient reference velocity 
(2gyJt  by the discharge coefficient Cd; i.e. 

Q d  = CdY,(2gY,)+. 

Using this definition in conjunction with (1) and ( 2 )  gives 

(33) 

The solution to this problem can be and has been extended to  the determination 
of velocities and pressures along the channel bottom as well as on the gate itself; 
some of these results will be presented graphically in the next section. Only 
the method of performing these computations will be outlined here, however, 
for it is felt that these results will not be so useful as the relations already pre- 
sented. Equation (23)  can easily be evaluated for t < - 1, and then (7) and (8) 
yield rather easily the local velocity and the z plane co-ordinate for each value 
oft. By extending the centre portion of ( 2 )  to include a local pressure term, the 
gauge pressure p at any interior point in the flow is found to be 

Of course, on the channel bottom y = 0. Establishing a relation between a known 
free-surface point z, and a point on the channel floor zf is conceptually straight- 
forward but is also algebraically tedious. The correspondence is obtained by 
integrating (8) along the arc t = - 1 + 6eiv (6 < 1,0 < Y < n-) to avoid the sin- 
gularity at  t = - 1. One substitutes this relation into (€9, rearranges the resulting 
massive expression into real and imaginary parts and evaluates the final quad- 
ratures on the computer. 
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5. Results and computing procedures 
Figure 4 depicts aradial gate with four different depths of flow upstream shown. 

Or the figure may be interpreted as showing four closely related but geometrically 
distinct radial gates, each having a different flow depth, although it was the 

i 
FIGURE 4. The radial gate and pressure distributions p/(pgy,). 

YIIY2 blY, 4 Y z  fzlY2 Qo blY1 
6.0 1.594 3.297 6.53 0.6275 0-2656 10.29 
5.0 1.602 3.005 5.37 0.6242 0.3204 8.33 
4.0 1.610 3.104 5.76 0.6209 0.4027 6.40 
3.0 1.614 3.355 6.79 0.6195 0.5381 4.50 

TABLE 1. Computed parameters for radial gate, figure 4 

YJYZ PI P P  P 3  = t J / t A  t A  G D  8, % 
degrees 

6.0 115.0 95.0 75.0 0.70 11.27 0.12 3.1 
5.0 112.2 93.6 74.9 0.71 7.27 0.15 2.5 
4.0 99.0 87.0 75.0 0.68 4.41 0.21 0.9 
3.0 87.0 81.0 74.8 0.68 2.08 0.30 0.2 

TABLE 2. Additional parameters for radial gate, figure 4 

writer’s intent to study one gate as an example. Since the physical-plane con- 
figuration is itself a computed result, it is not easily controlled in a precise manner. 
On the other hand, a gate shape which is reasonably close to a specified shape is 
not difficult to obtain. Tables 1 and 2 give the value of various gate and flow 
parameters for the flows of figure 4. 
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In  the example yJy2 and the curvature function P(t) were specified. Although 
the lip inclination was p3 = 75" for each depth, the contraction coefficient C, 
decreased slightly as the upstream depth decreased. The variation in trunnion 
elevation a and mean radius of curvature R is a further result of the inverse 
nature of the solution. After a solution was computed, the location of the trunnion 
or pivot for the gate was found by computing the intersection point of lines drawn 
perpendicularly through points A and B. The distance to point J was then found. 
Calling the distances from points A ,  B and J to the pivot R,, R, and R j  re- 
spectively, R = 6(RA + R, + Rj).  Since it was noted that small values of F2 
indicated a significant gravity effect, F2 is also tabulated. For values of yl/y2 
much less than 3-0, it  is felt that the current flow model with its horizontal up- 
stream upper surface is probably unrealistic and should not be used. 

Table 2 gives additional parameters associated with the example. As pointed 
out earlier, neither y(t )  nor P(t) is initially known for a given gate geometry. 
Because of the choice of flow model, a fluid flow still exists past the gate in the 
absence of gravity. Furthermore, the computer program for this problem executes 
in a few seconds in the absence of gravity. Values of yl/y2, p1, p2 and p3 would 
be prescribed from physical considerations, and non-gravity trial cases were 
computed for several prescribed values of h = t J / tA ;  the h-value that minimized 
the variation in R was chosen for use in the subsequent gravity computations. 
The non-gravity solution also computed a free-surface location y ( t )  which could 
be used as a first approximation in an iterative process to find the solution for 
the gravity-affected flow. 

Iteration to find the gravity solution now began. It was desired not to change 
tA or h in satisfying (22), for altering these basic t plane parameters would affect 
the entire solution in a non-linear fashion. However, p3 can easily be adjusted 
to satisfy (22) since the equation is linear in p3. Thus G, was computed and b3 
was adjusted. Using y(t) from the previous iteration, arrays of values for Gp(t) 
and G,(t) were computed, and then the complete solution was computed. This 
iterative cycle was repeated until the solution converged, usually after 2 or 3 
cycles. Table 3 shows the rate of convergence of several key parameters for the 
case y1/y2 = 4.0, which is rather strongly influenced by gravity. Cycle 0 is the 
non-gravity solution which starts with G, = 0.0. Two or three trials are needed 
to select b3 so that, after adjustments, one later achieves the desired final value 
for it. During the solution p3 always decreased from one iteration to the next. 
Apparently 2 cycles of this solution would have been adequate for most purposes. 
For each case table 2 gives the final value of GD which, like F2, is a good measure 
of the effect of gravity on the flow. As a measure of the constancy of the gate 
radius of curvature, the maximum range of RIR along the gate is noted and 
expressed as a percentage &B. 

Figure 4 also shows computed pressure distributions along both the gate and 
channel bottom. The quantity p/(pgy,) is plotted normally from the gate surface 
and vertically along the channel bottom. The form of this plot compares well 
with Metzler's (1948) experimental work. Due to the parameterization of this 
solution, however, it was not possible to produce easily a set of data which could 
be directly compared with his results. 
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Figure 5 compares the contraction coefficients C, for the radial gate (table 1) 
with C, for a planar gate, each having a lip inclination b3 = 75". As bly, .+ 0 (or 
as y1 -+ CQ), C, + 0-647 according to classical theory. For finite curvature the 
radial gate G, is definitely below the planar gate C, but not markedly so. The small 
difference clearly occurs because most of the radial gate is locally inclined more 
steeply than 75". 

Cycle p3 (degrees) cc blY, G D  

0 81.14 0.6449 0.3877 0.0 
1 75-72 0.6237 0.4008 0.1814 
2 75.09 0.6212 0.4024 0.2024 
3 75.01 0.6209 0.4027 0.2051 
4 75.00 0.6209 0.4027 0-2055 

TABLE 3. Rate of convergence of parameters for the case yJy% = 4.0, figure 4 

blY1 

FIGURE 5. Comparison of C, for radial gate and planar gate with lip inclination = 75'. 
, radial gate; - - - , planar gate. 

Information on radial gate performance is often summarized in data on the 
discharge coefficient C, as a function of gate geometry. In  table 4 some results 
of the current theory are compared to data from other sources. Toch (1955) 
performed arelatively complete set of experiments to determine Cd(y,/R, b/R, a/R) 
for both the free and submerged outflow cases. His reported results were re- 
stricted to a/R = 0.1, 0.5, 0.9. An enlarged copy of his summary plot is found in 
Henderson (1966). The U.S. Army Engineer Waterways Experiment Station 
(WES) has prepared (1960) hydraulic design charts based on data from several 
sources, including Toch. Design curves were interpolated between data points. 
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WES remarks that values from the chart seem to conform to experimental results 
to within k 3 %. Babb (1966) supervised an extensive experimental program 
to determine discharge coefficients from the radial gates used in the California 
Aqueduct ; logarithmic fitting techniques were used to obtain reasonably accurate 
mathematical expressions for the discharge coefficient. This was done, and the 
investigators found an average error of about 3 % between the equations and 
individual experiments. Since Babb’s results are applicable only to a particular 
gate configuration, they cannot be used to check other results. 

Discharge coefficient Cd 
A 

I 1 

Source Case ... 1 2 3 4 5 

Larock 0.581 0.570 0.555 0-537 0.648 
Toch 0.56 0.54 0.53 0.51 0.63-0’64 
WE8 0.507 0.555 0.543 0.528 0.645 

- 0.667 Babb - - - 

TABLE 4. Comparison of discharge coefficients Cd from several sources 

In  table 4 the columns labelled as cases 1-4 report the results from figure 4 
and tables 1 and 2; case 1 corresponds to y1/y2 = 6.0 and cases 2-4 correspond to  
y l /yz  = 5.0,4.0, and 3.0, respectively. Case 5 closely reproduces one flow past the 
California Aqueduct radial gate. The current theory correlates best with the 
WES design charts and less well with Toch. The differences between WES and 
the theoretical predictions are in the same direction and approximately of the 
same magnitude as Fangmeier & Strelkoff (1968) report in a comparison between 
theory and experiment for the vertical sluice gate. The fact that Toch’s plots 
are quite small makes it difficult to read the graphs accurately and may contribute 
to the apparent inaccuracies. In  almost every case a 3-5 % change in the result 
would bring theory and experiment into agreement. 

It is natural to inquire what must be done to improve further the agreement 
between theory and experiment. A comparison of the vertical sluice gate study 
by Fangmeier & Strelkoff (1968) and the planar gate study by the writer (Larock 
1969a) indicates that the presence of the horizontal upstream surface in the 
current study causes the theory to predict contraction coefficients which are 
slightly high. This difference does not noticeably affect computed discharge co- 
efficients, however. One also expects the viscosity of the real fluid to cause small 
but significant deviations between theory and experiment; Benjamin (1956) and 
several more recent writers have shown that consideration of a laminar boundary 
layer forming along the channel bottom beneath the gate properly explains the 
order of magnitude of the difference between theory and experiment for C,. 
For this reason boundary-layer corrections were considered briefly in the current 
study. In  computing pressures in this study, local velocities were first calculated. 
Velocities were quite low over most of the gate, and most of the velocity change 
along the channel bottom occurred in a distance y1 from the gate. Thus it was 
felt that boundary-layer formation on the gate could be ignored. Along the 
channel bottom Thwaites’s method (Rosenhead 1963) of computing a laminar 
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boundary layer in a favourable pressure gradient was applied to determine the 
displacement thickness as a function of distance along the channel bottom. As 
a result it  appears that a simple displacement thickness approach to the viscous 
correction factor for the problem is not quantitatively sufficient. A more com- 
plete study seems to be needed. 

Conformal mapping and the Riemann-Hilbert solution to a mixed boundary- 
value problem form the basis of a rapidly convergent, iterative technique which 
describes the free outflow from radial gates. Relatively good agreement with a 
limited number of experimental results was shown. Circumstances permitting, 
it would be desirable to compute a larger number of cases so that (i) theory and 
experiment might be checked more thoroughly and (ii) some useful engineering 
design charts might be plotted on the basis of the theory. The limited results 
indicate, however, that the theory can produce sufficiently accurate results for 
use in many engineering projects. 
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